Pluto’s hydrocarbon haze keeps dwarf planet colder than expected

The gas composition of a planet’s atmosphere generally determines how much heat gets trapped in the atmosphere. For the dwarf planet Pluto, however, the predicted temperature based on the composition of its atmosphere was much higher than actual measurements taken by New Horizons spacecraft in 2015.

A new study proposes a novel cooling mechanism controlled by haze particles to account for Pluto’s frigid atmosphere, according to Science Daily.

“It’s been a mystery since we first got the temperature data from New Horizons,” said first author Xi Zhang, assistant professor. “Pluto is the first planetary body we know of where the atmospheric energy budget is dominated by solid-phase haze particles instead of by gases.”

 The cooling mechanism involves the absorption of heat by the haze particles, which then emit infrared radiation, cooling the atmosphere by radiating energy into space. The result is an atmospheric temperature of about 70 Kelvin (minus 203 degrees Celsius, or minus 333 degrees Fahrenheit), instead of the predicted 100 Kelvin (minus 173 Celsius, or minus 280 degrees Fahrenheit).

According to Zhang, the excess infrared radiation from haze particles in Pluto’s atmosphere should be detectable by Space Telescope, allowing confirmation of his team’s hypothesis after the telescope’s planned launch in 2019.

Extensive layers of atmospheric haze can be seen in images of Pluto taken by New Horizons. The haze results from chemical reactions in the upper atmosphere, where ultraviolet radiation from the sun ionizes nitrogen and methane, which react to form tiny hydrocarbon particles tens of nanometers in diameter. As these tiny particles sink down through the atmosphere, they stick together to form aggregates that grow larger as they descend, eventually settling onto the surface.

“We believe these hydrocarbon particles are related to the reddish and brownish stuff seen in images of Pluto’s surface,” Zhang said.

The researchers are interested in studying the effects of haze particles on the atmospheric energy balance of other planetary bodies, such as Neptune’s moon Triton and Saturn’s moon Titan. Their findings may also be relevant to investigations of exoplanets with hazy atmospheres.

N.H.Kh

You might also like
Latest news
UN Resident and Humanitarian Coordinator in Syria: Reports about United Nations evacuating all its s... Army General Command: The Syrian people are facing systematic media and terrorist war aiming at dest... Syrian Army Eliminates large numbers of Terrorists, destroys dozens of their vehicles in northern Ho... Presidency of the Republic: President Al-Assad is assuming his work, national and constitutional dut... Lavrov: Russia, Iran, Turkey agreed on facilitating the stopping of military operations in Syria, st... Iran reaffirms ongoing support for Syrian people, government Russian and Iraqi foreign ministers discuss situation in Syria and its serious impacts on the region... Damascus International Airport operating at full capacity, news about stopping operations is not tru... The Russian "Roads of Glory - Our History" movement condems the terrorist organizations' attack on S... Baghaei: Allegations about the evacuation of the Iranian Embassy in Damascus are not true 27 martyrs in Israeli occupation massacres in Gaza A statement by the General Command of the Army and Armed Forces Joint statement of the foreign ministers of Syria, Iraq and Iran: "Threatening Syria’s security enda... Friends of UN Charter condemn terrorist attacks in Syria Foreign Ministers of Syria, Iraq and Iran hold joint press conference on the situation in Syria Iraqi President reaffirms need to preserve Syria's unity and sovereignty Israeli occupation forces raid Kamal Adwan hospital in Gaza, force medical staff and patients to lea... The Syrian Army eliminates dozens of terrorists in Hama countryside Lavrov: Information indicates the United States, Britain support terrorist groups in northern Syria Fayyadh: Syria’s security cannot be separated from Iraq’s