Light switch in autumn leaves

Before trees lose their leaves in the winter, they offer us a bright autumnal display of reds, oranges, and yellows. This result from the decomposition of the compound that makes leaves green: chlorophyll. Among the decomposition products are yellow phyllobilins that demonstrate unusual chemical properties, these compounds act as four-step molecular “switches” that are triggered by light in different ways depending on the environment according to Science daily.

During the summer, green leaves use their chlorophyll to convert sunlight into chemical energy. Before they lose their leaves in the cold season, trees reclaim important nutrients like nitrogen and minerals. “The chlorophyll released in this process must be broken down because it has a damaging effect on the tree when it is irradiated by light while unbound,” explains Bernhard Kräutler. “Presumably, the chlorophyll decomposition products play a physiological role as well.”

The decomposition of chlorophyll leads to the formation of phyllo bilins. Most of these are colorless, but in leaves there are also yellow ones, known as phylloxanthobilins. Researchers have now demonstrated that these compounds act as unique four-stage “switches” that react to light (photoswitches). The molecular environment determines which “switching mechanism” is used.

In polar media, such as the aqueous environment inside a cell, phylloxanthobilins are found as simple molecules. When irradiated with light, they switch reversibly between two forms that have slightly different spatial structures around one double bond (Z/E-isomerization). This is similar to important plant photos witches. In nonpolar media and presumably in cellular membrane systems, the Z-isomers pair up and are held together by hydrogen bonds. Irradiation with light leads to a chemical reaction between the two paired molecules. In this cycloaddition, the paired molecules are bound together into a dimer through a ring made of four carbon atoms. Slight heating reverses this process.

“By using X-ray crystallographic analysis, we were able to determine the precise spatial arrangement (stereo structure) of a phylloxanthobilins and the hydrogen-bonded pair structure they adopt when crystallized,” reports Kräutler. “The fascinating chemistry of these substances also suggests that phyllobilins may have important, unknown physiological roles, possibly in the photoregulation of plants. Our new insights will help to elucidate this role.”

 

N.H.Kh

 

You might also like
.. _copyright: Copyright ========= .. code-block:: none Copyright (C) 1998-2000 Tobias Ratschiller Copyright (C) 2001-2018 Marc Delisle Olivier Müller Robin Johnson Alexander M. Turek Michal Čihař Garvin Hicking Michael Keck Sebastian Mendel [check credits for more details] This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Third party licenses ++++++++++++++++++++ phpMyAdmin includes several third-party libraries which come under their respective licenses. jQuery's license, which is where we got the files under js/vendor/jquery/ is (MIT|GPL), a copy of each license is available in this repository (GPL is available as LICENSE, MIT as js/vendor/jquery/MIT-LICENSE.txt). The download kit additionally includes several composer libraries. See their licensing information in the vendor/ directory.