In dangerous fungal family’s befriending of plants, a story of loss

 If Lewis Carroll had described in detail the mushroom Alice nibbles in Wonderland to shrink and grow to her rightful size, he might have noted a scarlet cap topped with white warts: the fly amanita, according to Science Daily.

This brilliant, distinctive toadstool is hallucinogenic. Eating it can distort perception and cause objects to appear to expand and contract, making this mushroom at home in Wonderland. Fly amanitas inspired the magic mushrooms in Super Mario Brothers and are littered throughout art and literature. Other members of the Amanita genus, like the death-cap mushroom, are fatal.

 Yet these fanciful and sometimes dangerous mushrooms are also friendly — at least to plants. Most Amanitas can only survive by closely partnering with plants, providing their roots with minerals and nutrients in exchange for sugars. This symbiosis evolved more than 50 million years ago and helps forest ecosystems thrive.

Anne Pringle, a professor of botany and bacteriology at the University of Wisconsin-Madison, researches what genetic changes drove some Amanitas away from their ancestral, decomposing lifestyle toward this intimate relationship with plants. In new work, Pringle and her collaborators show that gene loss — not the evolution of new genes — helped drive this major change in the mushrooms’ lifestyle.

The team also suspects that they’ve identified a species of Amanita that is on its way to evolving a new symbiosis with plants. In all, the results provide further evidence that symbiosis may be a lot easier to develop than scientists once thought.

Or, as Pringle puts it: “Making friends is easy.”

To get at what separated symbiotic from free-living Amanitas, the researchers sequenced the genomes of three symbiotic Amanita species — including the fly amanita — and three close relatives that aren’t symbiotic. The genomic sequences allowed them to reconstruct the evolutionary paths that led to the fungi’s different adaptations.

“We went into this thinking we’d find commonalities between the three symbiotic Amanitas,” Pringle says.

But despite their similar lifestyles, symbiotic Amanitas looked vastly different from one another on the genomic level. Some symbiotic species had almost double the number of genes as their similarly symbiotic relatives. The symbiotic mushrooms seemed to take different genomic paths after they first diverged, developing unique ways to tailor their partnership with plants.

 

Earlier research on other families of mushrooms had suggested that one defining characteristic of symbiotic lifestyles was the loss of enzymes capable of degrading the cellulose-laden walls of plant cells. These genes are crucial for decomposers eating through leaf litter. But for fungi that associate with plants and must avoid harming their partners, cellulose-digesting enzymes are only a liability.

So when Pringle, Hess and their team looked at this group of digestive enzymes, they were surprised to find that the free-living species Amanita inopinata was missing these genes. Although symbiotic Amanita mushrooms had indeed lost this suite of digestive enzymes, Amanita inopinata‘s lack of them meant the researchers couldn’t link this loss to symbiosis itself.

Pringle says the unexpected absence of cell wall-digesting genes in Amanita inopinata‘s genome may actually be a clue pointing to evolution at work. If symbiosis only develops once fungi let go of these digestive enzymes, the researchers’ reason, then Amanita inopinata may be primed to evolve a closer partnership with plants.

Not quite symbiotic, perhaps not fully independent, Amanita inopinata seems to be “stuck between two worlds,” says Hess, who began the work while a postdoctoral researcher in the Pringle lab and is now a senior scientist at the University of Vienna.

The evolution of Amanita inopinata — “the unexpected one,” in Latin — and the other Amanitas also seem to support a developing consensus that symbiosis, once thought to be exceptional, may actually be easy to evolve. The researchers didn’t find that Amanita needed to develop a new, complex suite of genes in order to start partnering with plants. Instead, just letting go of a few once-vital genes may be sufficient to forge new relationships in nature.

“The story of making friends is one of loss,” says Pringle.

N.H.Kh

You might also like
Latest news
20 Palestinians martyred in new Israeli massacre in Tulkarm camp in West Bank 17 Israeli officers and soldiers killed in Lebanese resistance operations Ala: Syria looks forward to reaching Arab decision that rises to the level of the dangerous situatio... Iran condemns G7's biased stance on continued Israeli aggression Lebanese Army: A soldier and two civilians martyred due to Israeli airstrikes on south Lebanon    Social Affairs Ministry seeks enhancing cooperation with UNFPA in support of rapid response to arri... Palestinian Ministry of Education: More than 11,600 Palestinian school-age children have been martyr... Abkhazia strongly condemns Israeli aggression on Damascus Prime Minister and Indian Ambassador discuss ways to enhance cooperation between Syria and India Arab Writers Union in Syria participates in the 1st Conference of China-Arab Think Tank Alliance Gaza Burning Israelis Enjoying The View (Part III) Gaza Burning Israelis Enjoying The View (Part II) 41,788 Palestinians have been martyred, over 96,794 injured since the beginning of the Israeli aggre... Gaza Burning Israelis Enjoying the View 22 Palestinian films under the theme “Gaza, Point Zero” will be screened on October 7 at Oran Film F... Syria and Iran discuss cooperation in emergency response to those arriving from Lebanon due to Israe... Araghchi: Israeli crimes driving region to brink of serious crisis The Federation of Arab Journalists condemns the targeting of journalists in Syria and Lebanon The Lebanese resistance targets the Israeli enemy in Hanita site and Misgav Am settlement Iraq: International community has a moral and humanitarian responsibility to stop the massacres of I...