Air pollutants could boost potency of common airborne allergens

A pair of air pollutants linked to climate change could also be a major contributor to the unparalleled rise in the number of people sneezing, sniffling and wheezing during allergy season. The gases, nitrogen dioxide and ground-level ozone, appear to provoke chemical changes in certain airborne allergens that could increase their potency. That, in combination with changes in global climate, could help explain why airborne allergies are becoming more common.

“Scientists have long suspected that air pollution and climate change are involved in the increasing prevalence of allergies worldwide. But understanding the underlying chemical processes behind this phenomenon has proven elusive,” says Ulrich Pöschl, Ph.D., of the Max Planck Institute in Germany. “Our research is just a starting point, but it does begin to suggest how chemical modifications in allergenic proteins occur and how they may affect allergenicity.”

In previous work, Pöschl; Christopher Kampf, Ph.D.; Manabu Shiraiwa, Ph.D.; and colleagues at the Max Planck Institute explored how allergy-causing substances are altered in the air. Building on that work, they decided to dig deeper into how that happens and examine how traffic-related air pollutants could increase the strength of these allergens.

In laboratory tests and computer simulations, they studied the effects of various levels of ozone and nitrogen dioxide on the major birch pollen allergen called Bet v 1.

The researchers determined that ozone — the main component of smog — oxidizes an amino acid called tyrosine that helps form Bet v 1 proteins. This transformation sets in motion a chain of chemical reactions that involves reactive oxygen intermediates and can bind proteins together, altering their structures and their potential biological effects. When this occurs, Kampf says the cross-linked proteins can become more potent allergens.

Pöschl’s team also found that nitrogen dioxide, a component of automobile exhaust, appears to alter the polarity and binding capabilities of Bet v 1 allergenic proteins. This, in conjunction with the effects of ozone, the researchers predict, may enhance the immune response of the body to these particles, particularly in humid, wet and smoggy environments.

“Our research is showing that chemical modifications of allergenic proteins may play an important role in the increasing prevalence of allergies worldwide,” Kampf says. “With rising levels of these pollutants we will have more of these protein modifications, and in turn, these modifications will affect the allergenic potential of the protein.”

 

Source: Science daily

N.H.Khider

You might also like
.. _copyright: Copyright ========= .. code-block:: none Copyright (C) 1998-2000 Tobias Ratschiller Copyright (C) 2001-2018 Marc Delisle Olivier Müller Robin Johnson Alexander M. Turek Michal Čihař Garvin Hicking Michael Keck Sebastian Mendel [check credits for more details] This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Third party licenses ++++++++++++++++++++ phpMyAdmin includes several third-party libraries which come under their respective licenses. jQuery's license, which is where we got the files under js/vendor/jquery/ is (MIT|GPL), a copy of each license is available in this repository (GPL is available as LICENSE, MIT as js/vendor/jquery/MIT-LICENSE.txt). The download kit additionally includes several composer libraries. See their licensing information in the vendor/ directory.