Breaking News

Air Pollution from Asia Affecting World's Weather

Extreme air pollution in Asia is affecting the world's weather and climate patterns, according to a study by Texas A&M University and NASA's Jet Propulsion Laboratory researchers.

Yuan Wang, a former doctoral student at Texas A&M, along with Texas A&M atmospheric sciences professors Renyi Zhang and R. Saravanan, have had their findings published in the current issue of Nature Communications.

Using climate models and data collected about aerosols and meteorology over the past 30 years, the researchers found that air pollution over Asia -- much of it coming from China -- is impacting global air circulations.

"The models clearly show that pollution originating from Asia has an impact on the upper atmosphere and it appears to make such storms or cyclones even stronger," Zhang explains.

"This pollution affects cloud formations, precipitation, storm intensity and other factors and eventually impacts climate. Most likely, pollution from Asia can have important consequences on the weather pattern here over North America."

China's booming economy during the last 30 years has led to the building of enormous manufacturing factories, industrial plants, power plants and other facilities that produce huge amounts of air pollutants. Once emitted into the atmosphere, pollutant particles affect cloud formations and weather systems worldwide, the study shows.

Increases in coal burning and car emissions are major sources of pollution in China and other Asian countries.

Air pollution levels in some Chinese cities, such as Beijing, are often more than 100 times higher than acceptable limits set by the World Health Organization standards, Zhang says.

One study has shown that lung cancer rates have increased 400 percent in some areas due to the ever-growing pollution problem.

Conditions tend to worsen during winter months when a combination of stagnant weather patterns mixed with increased coal burning in many Asian cities can create pollution and smog that can last for weeks. The Chinese government has pledged to toughen pollution standards and to commit sufficient financial resources to attack the problem. "The models we have used and our data are very consistent with the results we have reached," Saravanan says.

"Huge amounts of aerosols from Asia go as high as six miles up in the atmosphere and these have an unmistakable impact on cloud formations and weather."

Zhang adds that "we need to do some future research on exactly how these aerosols are transported globally and impact climate. There are many other atmospheric observations and models we need to look at to see how this entire process works."

Yuan Wang, who conducted the research with Zhang while at Texas A&M, currently works at NASA's Jet Propulsion Laboratory as a Caltech Postdoctoral Scholar.

The study was funded by grants from NASA, Texas A&M's Supercomputing facilities and the Ministry of Science and Technology of China.

Source: Science Daily

R.S

Iranian surgeon: brain cancer vaccine is a promising therapy

A London-based Iranian neurosurgeon who is leading the first ever brain cancer vaccine trial in Europe, says he is satisfied with the initial results of this new therapy for the most aggressive form of brain cancer known as “glioblastomatumour”.

Iranian surgeon: brain cancer vaccine is a promising therapy

In an exclusive interview with IRNA, Dr Keyoumars Ashkan, consultant neurosurgeon and Reader (Associate Professor) at King’s College Hospital London, said this is an individualised treatment based on each patientˈs own cancer type because glioblastomas are genetically different.

Under the supervision of Dr Ashkan, the first patient in Europe, a 62 year old male, has received the new vaccine in September last year. The vaccine had been produced from his own tumour after an operation in June.

“Since September we have recruited another 10 patients at Kingˈs College Hospital to this trial and so far I am happy with the progress of the trial ”, said DrAshkan, who is also the Lead for Neuro-Oncology at King’s College as well as a fellow of the Royal College of Surgeons in Neurosurgery.

However he stressed that this is still a trial and “we should be patient and test the vaccine on more patients to see how effective it would be at the end of the trial process.”

Source: irna.ir

B.N

New Salt Compounds Challenge the Foundation of Chemistry

All good research breaks new ground, but rarely does the research unearth truths that challenge the foundation of a science. That's what Artem R. Oganov has done, and the professor of theoretical crystallography in the Department of Geosciences will have his work published in the Dec. 20, 2013 issue of the journal Science.

The paper, titled "Unexpected stable stoichiometries of sodium chlorides," documents his predictions about, and experiments in, compressing sodium chloride -- rock salt -- to form new compounds. These compounds validate his methodology for predicting the properties of objects -- a methodology now used worldwide for computational material discovery -- and hold the promise of novel materials and applications.

"I think this work is the beginning of a revolution in chemistry," Oganov says. "We found, at low pressures achievable in the lab, perfectly stable compounds that contradict the classical rules of chemistry. If you apply the rather modest pressure of 200,000 atmospheres -- for comparison purposes, the pressure at the center of the Earth is 3.6 million atmospheres -- everything we know from chemistry textbooks falls apart."

Standard chemistry textbooks say that sodium and chlorine have very different electronegativities, and thus must form an ionic compound with a well-defined composition. Sodium's charge is +1, chlorine's charge is -1; sodium will give away an electron, chlorine wants to take an electron. According to chemistry texts and common sense, the only possible combination of these atoms in a compound is 1:1 -- rock salt, or NaCl.

"We found crazy compounds that violate textbook rules -- NaCl3, NaCl7, Na3Cl2, Na2Cl, and Na3Cl," says Weiwei Zhang, the lead author and visiting scholar at the Oganov lab and Stony Brook's Center for Materials by Design, directed by Oganov. "These compounds are thermodynamically stable and, once made, remain indefinitely; nothing will make them fall apart. Classical chemistry forbids their very existence. Classical chemistry also says atoms try to fulfill the octet rule -- elements gain or lose electrons to attain an electron configuration of the nearest noble gas, with complete outer electron shells that make them very stable. Well, here that rule is not satisfied."

This opens all kinds of possibilities. Oganov posited that, if you mix NaCl with metallic sodium, compress in a diamond anvil cell, and heat, you will get sodium-rich compounds like Na3Cl. He likewise theorized that, if you take NaCl, mix it with pure chlorine, and compress and heat, you will get chlorine-rich compounds such as NaCl3. This is exactly what was seen in the experiments, which were performed by the team of Alexander F. Goncharov of Carnegie Institution of Washington, confirming Oganov's predictions. "When you change the theoretical underpinnings of chemistry, that's a big deal," Goncharov says. "But what it also means is that we can make new materials with exotic properties."

Among the compounds Oganov and his team created are two-dimensional metals, where electricity is conducted along the layers of the structure. "One of these materials -- Na3Cl -- has a fascinating structure," he says. "It is [composed of] layers of NaCl and layers of pure sodium. The NaCl layers act as insulators; the pure sodium layers conduct electricity. Systems with two-dimensional electrical conductivity have attracted a lot of interest."

Like much of science, Oganov's pursuit began with curiosity -- and obstinacy.

"For a long time, this idea was haunting me -- when a chemistry textbook says that a certain compound is impossible, what does it really mean, impossible? Because I can, on the computer, place atoms in certain positions and in certain proportions. Then I can compute the energy. 'Impossible' really means that the energy is going to be high. So how high is it going to be? And is there any way to bring that energy down, and make these compounds stable"?

To Oganov, impossible didn't mean something absolute. "The rules of chemistry are not like mathematical theorems, which cannot be broken," he says. "The rules of chemistry can be broken, because impossible only means 'softly' impossible! You just need to find conditions where these rules no longer hold."

Oganov's team harnessed their own energy to bring the research to fruition. "We have a fantastic team," he says. "The theoretical work was done here at Stony Brook; the experimental work took place at the Geophysical Laboratory in the Carnegie Institution of Washington."

Additionally, Oganov's team utilized the NSF-funded Extreme Science and Engineering Discovery Environment (XSEDE) by running USPEX code -- the world-leading code for crystal structure prediction -- on Stampede, a supercomputer at the Texas Advanced Computing Center at the University of Texas at Austin. USPEX was developed by Oganov's lab and he estimates over 1,500 researchers use it worldwide.

His discovery may have application in the planetary sciences, where high-pressure phenomena abound. It may explain results of other experiments, where researchers compressed materials and got puzzling results. His computational methodology and structure-prediction algorithms will help researchers predict material combinations and structures that exhibit desired properties and levels of stability.

"We have learned an important lesson -- that even in well-defined systems, like sodium chloride, you can find totally new chemistry, and totally new and very exciting materials," Oganov says. "It's like discovering a new continent; now we need to map the land. Current rules cannot cope with this new chemistry. We need to invent something that will."

Source: Science Daily

N.Haj.Khidr

Hubble Space Telescope Sees Evidence of Water Vapor Venting Off Jupiter Moon

NASA's Hubble Space Telescope has observed water vapor above the frigid south polar region of Jupiter's moon Europa, providing the first strong evidence of water plumes erupting off the moon's surface.

Previous scientific findings from other sources already point to the existence of an ocean located under Europa's icy crust. Researchers are not yet fully certain whether the detected water vapor is generated by erupting water plumes on the surface, but they are confident this is the most likely explanation.

Should further observations support the finding, this would make Europa the second moon in the solar system known to have water vapor plumes. The findings are being published in the Dec. 12 online issue of Science Express, and reported at the meeting of the American Geophysical Union in San Francisco.

"By far the simplest explanation for this water vapor is that it erupted from plumes on the surface of Europa," said lead author Lorenz Roth of Southwest Research Institute in San Antonio. "If those plumes are connected with the subsurface water ocean we are confident exists under Europa's crust, then this means that future investigations can directly investigate the chemical makeup of Europa's potentially habitable environment without drilling through layers of ice. And that is tremendously exciting."

In 2005, NASA's Cassini orbiter detected jets of water vapor and dust spewing off the surface of Saturn's moon Enceladus. Although ice and dust particles have subsequently been found in the Enceladus plumes, only water vapor gases have been measured at Europa so far.

Hubble spectroscopic observations provided the evidence for Europa plumes in December 2012. Time sampling of Europa's auroral emissions measured by Hubble's imaging spectrograph enabled the researchers to distinguish between features created by charged particles from Jupiter's magnetic bubble and plumes from Europa's surface, and also to rule out more exotic explanations such as serendipitously observing a rare meteorite impact.

The imaging spectrograph detected faint ultraviolet light from an aurora, powered by Jupiter's intense magnetic field, near the moon's south pole. Excited atomic oxygen and hydrogen produce a variable auroral glow and leave a telltale sign that are the products of water molecules being broken apart by electrons along magnetic field lines.

"We pushed Hubble to its limits to see this very faint emission. These could be stealth plumes, because they might be tenuous and difficult to observe in the visible light," said Joachim Saur of the University of Cologne, Germany. Saur, who is principal investigator of the Hubble observation campaign, co-wrote the paper with Roth.

Roth suggested that long cracks on Europa's surface, known as lineae, might be venting water vapor into space. Cassini has seen similar fissures that host the Enceladus jets.

Also the Hubble team found that the intensity of the Europa plumes, like those at Enceladus, varies with Europa's orbital position. Active jets have only been seen when the moon is farthest from Jupiter. The researchers could not detect any sign of venting when Europa is closer to Jupiter.

One explanation for the variability is that these lineae experience more stress as gravitational tidal forces push and pull on the moon and open vents at larger distances from Jupiter. The vents are narrowed or closed when the moon is closest to the gas-giant planet.

"The apparent plume variability supports a key prediction that Europa should tidally flex by a significant amount if it has a subsurface ocean," said Kurt Retherford, also of Southwest Research Institute.

The Europa and Enceladus plumes have remarkably similar abundances of water vapor. Because Europa has a roughly 12 times stronger gravitational pull than Enceladus, the minus-40-degree-Fahrenheit (minus-40-degree-Celsius) vapor for the most part doesn't escape into space as it does at Enceladus, but rather falls back onto the surface after reaching an altitude of 125 miles (201 kilometers), according to the Hubble measurements. This could leave bright surface features near the moon's south polar region, the researchers hypothesize.

"If confirmed, this new observation once again shows the power of the Hubble Space Telescope to explore and opens a new chapter in our search for potentially habitable environments in our solar system," said John Grunsfeld, an astronaut who participated Hubble servicing missions and now serves as NASA's associate administrator for science in Washington. "The effort and risk we took to upgrade and repair Hubble becomes all the more worthwhile when we learn about exciting discoveries like this one from Europa."

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Source:Science Daily

R.Sawas

Apple Mac Pro could arrive on 16 December

Although there has been no word from Cupertino, a German e-tailer had started taking pre-orders for the desktop machine. Conrad Electronic has since removed the webpage, but by that time the news had already spread across social media.

Apple had already said that it planned to launch the Mac Pro in December, however thus far it had not mentioned a specific date.

The Mac Pro will sport an Intel Xeon E5 processor with options for between four and 12 cores. Up to 64GB of 1866Mhz DDR3 will be available and storage options will range from 256GB to 1TB.

Its casing is black, glossy and cylindrical, drawing comparisons with something from a sci-fi movie and fitting with Apple's brief to make a next generation desktop machine. It will have 4K video capability via an HDMI 4.1 port, plus an abundance of USB and Thunderbolt 2 ports, rounded off with Bluetooth and 802.11ac WiFi.

All of this high end technology comes at a typically high Apple price, however, with prices starting at $2,999.

While it is possible that Conrad Electronic was simply speculating, this does seem to be the most solid evidence yet that there is a definite date for the arrival of the Mac Pro, and that it will be here before the figgy pudding.

Source:newsrule.com

B.N

Subcategories